前言 血气分析可能是重症治疗中最常用的诊断工具。实际上,只要能正确理解和使用动脉和肺动脉/中心静脉血的血气以及电解质分析,就有可能正确地解读重症患者发生的绝大部分呼吸、循环和代谢紊乱。 一些易被忽略的血气分析参数 在讨论临床应用之前,我们首先强调一下血气分析的一些常被忽略的变量。讲真,以下几点是非常值得大家注意的:
● 在严重酸中毒或碱中毒时,不同的血气分析仪之间因运算方法不同,使得相同的pH值和PCO2计算出来的碳酸氢根结果相差达2 mmol/L。
● 剩余碱(BE)是缓冲碱的实际检测值与理想值之差,即等于强离子间隙(SID),理想的缓冲碱即是在PCO2 40 mmHg、pH 7.40、及血红蛋白70 g/L时,测量到的碳酸氢根、离解蛋白和磷酸氢根的总和。由于静脉血的pH值较动脉血低、PCO2较动脉血高(导致碳酸氢根增加),故静脉血的BE比动脉血高出1.5-2mmol/L。 血气分析的临床应用 动脉血气分析
动脉血气分析可以准确反映氧合的情况(如:PaO2和血红蛋白氧饱和度,无论是计算值还是应用血氧测定法的直接测量值)、通气状态(PaCO2)和酸碱平衡(BE和pH值)。然而,需要指出的是,氧合情况也可以通过脉搏血氧饱和度来进行临床评估,但要注意其局限性,例如:当存在羧基化的和变性的血红蛋白、重度贫血、血管收缩时,严重者可影响监测结果。 中心静脉血气分析
由此可见,肺功能、血流动力学、代谢或氧输送任何一个变量发生改变都会影响中心静脉血氧饱和度(SatvO2)。实际上,SatvO2并没有告诉我们具体是哪个系统的功能受损(它是非特异性的),但是它能快速反应全身的变化(其具有极高的敏感性)。因此,对于已有脉搏血氧饱和度监测的患者,同时监测其中心静脉血气分析,较动脉血气分析可提供更多的信息。 双重血气分析(同时监测动脉和中心静脉血气分析) 通过双重血气分析我们可以获得一些重要的数据变量。在这里,我们主要针对分流分数和肺的死腔通气进行评估。
分流分数 分流分数确切的说是静脉血掺杂(肺内分流,译者注),定义为:当FiO2低于1.0时,流经通气量很小或没有通气/灌注比的那部分肺泡的血流量与心输出量的比例。虽然在重症医学领域中很少使用它,但它是评估氧合状态的最佳指标,目前重症医学领域内经常使用氧合指数「PaO2/FiO2 (P/F) (mmHg)」来评估氧合情况。P/F在评估氧合状态时的局限性见图1, 我们绘制了不同FiO2水平下P/F比值与分流分数之间的函数关系。如图所示,根据FiO2的不同,同一位实际分流分数为30%的患者,可以分别被归入到重度、中度、甚至轻度缺氧这三个级别中去。只有在分流分数波动在0.2~0.3之间时,静脉血掺杂和P/F比值之间才有显著的相关性。
肺的死腔(无效腔) 肺的死腔测量需要对PaCO2和气道混合气体PCO2(生理无效腔)或呼气末PCO2(肺泡无效腔)进行监测。但在ICU中这些检测也几乎被废用了,因为气体PCO2水平并不被认为是一个与临床相关的问题。然而,舍弃无效腔测量意味着忽略了一项极好的监测肺部解剖结构变化的床旁指标,或者说遗漏了一项可用于预测ARDS患者预后的最佳指标。事实上,死腔通气的计算值不只是在肺部通气的VA/Q比值增高时增加,在分流增加时也同样增加。因此,生理死腔是衡量肺部整体通气(肺的死腔和分流)功能的极好的指标。
呼吸、血流动力学和代谢之间的关系 除了分流分数和死腔通气之外,同时采样动脉血和中心静脉血进行血气分析监测,有助于诊断和监测一些其它病理生理状态:
图1.在不同的氧浓度水平下,氧合指数与分流分数之间的函数关系。应用Kelman’s子程序进行计算,假设氧耗为250ml/min,心输出量为5L/min,体温为37℃,PaCO2 40mmHg,pH 7.40。不同颜色区域代表不同的氧合障碍程度,浅蓝色(轻度),黄色(中度),红色(重度)。 |